domingo, 21 de marzo de 2010

MOSFETs





MOSFET son las siglas de Metal Oxide Semiconductor Field Effect Transistor. Consiste en un transistor de efecto de campo basado en la estructura MOS. Es el transistor más utilizado en la industria microelectrónica. Prácticamente la totalidad de los circuitos integrados de uso comercial están basados en transistores MOSFET.



Historia
Fue ideado teóricamente por el alemán Julius von Edgar Lilienfeld en 1930, aunque debido a problemas de carácter tecnológico y el desconocimiento acerca de cómo se comportan los electrones sobre la superficie del semiconductor no se pudieron fabricar hasta décadas más tarde. En concreto, para que este tipo de dispositivos pueda funcionar correctamente, la intercara entre el sustrato dopado y el aislante debe ser perfectamente lisa y lo más libre de defectos posible. Esto es algo que sólo se pudo conseguir más tarde, con el desarrollo de la tecnología del silicio


Funcionamiento

Un transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor. Los transistores MOSFET se dividen en dos tipos fundamentales dependiendo de cómo se haya realizado el dopaje:
• Tipo nMOS: Sustrato de tipo p y difusiones de tipo n.
• Tipo pMOS: Sustrato de tipo n y difusiones de tipo p.
Las áreas de difusión se denominan fuente(source) y drenador(drain), y el conductor entre ellos es la puerta(gate).





El transistor MOSFET tiene tres estados de funcionamiento:

Estado de corte
Cuando la tensión de la puerta es idéntica a la del sustrato, el MOSFET está en estado de no conducción: ninguna corriente fluye entre fuente y drenador aunque se aplique una diferencia de potencial entre ambos. También se llama mosfet a los aislados por juntura de dos componentes.


Conducción lineal
Al polarizarse la puerta con una tensión negativa (pMOS) o positiva (nMOS), se crea una región de deplexión en la región que separa la fuente y el drenador. Si esta tensión crece lo suficiente, aparecerán portadores minoritarios (electrones en pMOS, huecos en nMOS) en la región de deplexión que darán lugar a un canal de conducción. El transistor pasa entonces a estado de conducción, de modo que una diferencia de potencial entre fuente y drenador dará lugar a una corriente. El transistor se comporta como una resistencia controlada por la tensión de puerta.

Saturación
Cuando la tensión entre drenador y fuente supera cierto límite, el canal de conducción bajo la puerta sufre un estrangulamiento en las cercanías del drenador y desaparece. La corriente entre fuente y drenador no se interrumpe, ya que es debida al campo eléctrico entre ambos, pero se hace independiente de la diferencia de potencial entre ambos terminales.

Aplicaciones
La forma más habitual de emplear transistores MOSFET es en circuitos de tipo CMOS, consistentes en el uso de transistores pMOS y nMOS complementarios. Véase Tecnología CMOS
Las aplicaciones de MOSFET discretos más comunes son:
• Resistencia controlada por tensión.
• Circuitos de conmutación de potencia (HEXFET, FREDFET, etc).
• Mezcladores de frecuencia, con MOSFET de doble puerta.
Ventajas
La principal aplicación de los MOSFET está en los circuitos integrados, p-mos, n-mos y c-mos, debido a varias ventajas sobre los transistores bipolares:
• Consumo en modo estático muy bajo.
• Tamaño muy inferior al transistor bipolar (actualmente del orden de media micra).
• Gran capacidad de integración debido a su reducido tamaño.
• Funcionamiento por tensión, son controlados por voltaje por lo que tienen una impedencia de entrada muy alta. La intensidad que circula por la puerta es del orden de los nanoamperios.
• Un circuito realizado con MOSFET no necesita resistencias, con el ahorro de superficie que conlleva.
• La velocidad de conmutación es muy alta, siendo del orden de los nanosegundos.
• Cada vez se encuentran más en aplicaciones en los convertidores de alta frecuencias y baja potencia.
BANDGAD SEMICONDUCTORS
Wide bandgap semiconductors are semiconductor materials with electronic band gaps larger than one or two electronvolts (eV). The exact threshold of "wideness" often depends on the application, such as optoelectronic and power devices. Wide bandgap materials are often utilized in applications in which high-temperature operation is important.

Motivation Driving Utilization in Devices

Solid state lighting could reduce the amount of energy required to provide lighting as compared with incandescent lights, which are associated with a light output of less than 20 lumens per watt. The efficiency of light emitting diodes is on the order of 160 lumens per watt. Wide bandgap semiconductors can be used to create light throughout the visible spectrum.
Wide bandgap semiconductors can also be used in RF signal processing. Silicon-based power transistors are reaching limits of operating frequency, breakdown voltage, and power density. Wide bandgap materials can be used in high-temperature and power switching applications.

Materials

There are many III-V and II-VI compound semiconductors with high bandgaps. The only high bandgap materials in group IV are diamond and silicon carbide (SiC).
Aluminium nitride (AlN) can be used to fabricate ultraviolet LEDs with wavelengths down to 200-250 nm.
Gallium nitride (GaN) is used to make blue LEDs and lasers.

Material Properties


Wide bandgap materials are defined as semiconductors with bandgaps greater than 1.7 eV.

Bandgap


The magnitude of the coulombic potential determines the bandgap of a material, and the size of atoms and electronegativities are two factors that determine the bandgap. Materials with small atoms and strong, electronegative atomic bonds are associated with wide bandgaps. Smaller lattice spacing results in a higher perturbing potential of neighbors.
Elements high on the periodic table are more likely to be wide bandgap materials. With regard to III-V compounds, nitrides are associated with the largest bandgaps, and, in the II-VI family, oxides are generally considered to be insulators.
Bandgaps can often be engineered by alloying, and Vegard's Law states that there is a linear relation between lattice constant and composition of a solid solution at constant temperature.
The position of the conduction band minima versus maxima in the band diagram determine whether a bandgap is direct or indirect. Most wide bandgap materials are associated with a direct bandgap, with SiC and GaP as exceptions.

Optical Properties

The minimum photon energy that is needed to excite an electron into the conduction band is associated with the bandgap of a material. When electron-hole pairs undergo recombination, photons are generated with energies that correspond to the magnitude of the bandgap.
A phonon is required in the process of absorption or emission in the case of an indirect bandgap. There must be a direct bandgap in applications of optical devices.

Breakdown Field


Impact ionization is often attributed to be the cause of breakdown. At the point of breakdown, electrons in a semiconductor are associated with sufficient kinetic energy to produce carriers when they collide with lattice atoms.
Wide bandgap semiconductors are associated with a high breakdown voltage. This is due to a larger electric field required to generate carriers through impact mechanism.
At high electric fields, drift velocity saturates due to scattering from optical phonons. A higher optical phonon energy results in fewer optical phonons at a particular temperature, and there are therefore fewer scattering centers, and electrons in wide bandgap semiconductors can achieve high peak velocities.
The drift velocity, reaches a peak at an intermediate electric field and undergoes a small drop at higher fields. Intervalley scattering is an additional scattering mechanism at large electric fields, and it is due to a shift of carriers from the lowest valley of the conduction band to the upper valleys, where the lower band curvature raises the effective mass of the electrons and lowers mobility. The drop in drift velocity at high electric fields due to intervalley scattering is small in comparison to high saturation velocity that results from low optical phonon scattering. There is therefore an overall higher saturation velocity.

Saturation Velocity


High effective masses of charge carriers are a result of low band curvatures, which correspond to low mobility. Fast response times of devices with wide bandgap semiconductors is due to the high carrier drift velocity at large electric fields, or saturation velocity.

Bandgap Discontinuity


When wide bandgap semiconductors are used in heterojunctions, band discontinuities formed at equilibrium can be a design feature, although the discontinuity can result in complications when creating ohmic contacts.
Polarization
Wurtzite and zincblende structures characterize most wide bandgap semiconductors. Wurtzite phases allow spontaneous polarization in the (0001) direction. A result of the spontaneous polarization and piezoelectricity is that the polar surfaces of the materials are associated with higher sheet carrier density than the bulk.The polar face produces a strong electric field, which creates high interface charge densities.

Thermal Properties

Melting temperatures, thermal expansion coefficients, and thermal conductivity can be considered to be secondary properties that are essential in processing, and these properties are related to the bonding in wide bandgap materials. Strong bonds result in higher melting temperatures and lower thermal expansion coefficients. A high Debye temperature results in a high thermal conductivity. With such thermal properties, heat is easily removed.

Heterojunction Bipolar Transistor (HBT)
The heterojunction bipolar transistor (HBT) is an improvement of the bipolar junction transistor (BJT) that can handle signals of very high frequencies up to several hundred GHz. It is common in modern ultrafast circuits, mostly radio-frequency (RF) systems, as well as applications requiring a high power efficiency, such as power amplifiers in cellular phones. The idea of employing a heterojunction is as old as the conventional BJT, dating back to a patent from 1951
The principal difference between the BJT and HBT is in the use of differing semiconductor materials for the emitter and base regions, creating a heterojunction. The effect is to limit the injection of holes from the base into the emitter region, since the potential barrier in the valence band is higher than in the conduction band. Unlike BJT technology, this allows a high doping density to be used in the base, reducing the base resistance while maintaining gain. The efficiency of the device is measured by the Kroemer factor, after Herbert Kroemer who received a Nobel Prize for his work in this field in 2000 at the University of California, Santa Barbara.
Materials used for the substrate include silicon, gallium arsenide, and indium phosphide, while silicon / silicon-germanium alloys, aluminium gallium arsenide / gallium arsenide, and indium phosphide / indium gallium arsenide are used for the epitaxial layers. Wide-bandgap semiconductors are especially promising, eg. gallium nitride and indium gallium nitride.
In SiGe graded heterostructure transistors, the amount of germanium in the base is graded, making the bandgap narrower at the collector than at the emitter. That tapering of the bandgap leads to a field-assisted transport in the base, which speeds transport through the base and increases frequency response.



Fabrication
Due to the need to manufacture HBT devices with extremely high-doped thin base layers, molecular beam epitaxy is principally employed. In addition to base, emitter and collector layers, highly doped layers are deposited on either side of collector and emitter to facilitate an ohmic contact, which are placed on the contact layers after exposure by photolithography and etching. The contact layer underneath the collector is, named subcollector, is an active part of the transistor.
Other techniques are used depending on the material system. IBM and others use UHV CVD for SiGe; other techniques used include MOVPE for III-V systems

Metalorganic Chemical Vapor Deposition
This process is used to manufacture compound semiconductor devices, which consist of thin films of gallium arsenide, indium phosphide and other alloys of the group III and V elements of the Periodic Table. Compound semiconductors are used in a vast array of electronic and photonic devices, such as in solid-state lasers, light-emitting diodes, space solar cells, and high-speed transistors. These are critically needed components in both optical and wireless telecommunications systems.






Compound Semiconductor devices are used for the solar panels and the RF transmitters and receivers in communications satelites (pictured is a DirecTV satelite by Hughes Electronics).
In the metalorganic chemical vapor deposition (MOCVD) process, volatile precursors, e.g., trimethylindium, trimethylgallium and phosphine, are fed to the reactor in hydrogen carrier gas. When these molecules flow over the hot substrate, they decompose and deposit a thin film, e.g., InGaP. By depositing a compound that is lattice matched to the substrate (e.g., GaAs (001)), an epitaxial single crystal is grown. A device is produced by varying the composition and doping in the layers, while maintaining lattice matching at all times.







Heterojunction bipolar transistor (HBT) consisting of an n-type GaAs collector, p+ GaAs base, only 20 nm thick, and an InGaP emitter. These devices amplify RF signals by 20 times at a frequency of 1.9 GHz.
An example of a device grown by MOCVD is the heterojunction bipolar transistor (HBT) pictured above. This device is used extensively in digital cellular telephones and in high-speed communication networks. The critical layers in this device are only 10 to 20 nm thick. Thus, our research is at the cutting edge of Nanoscience and Technology.
During MOCVD, a series of surface reactions occur as shown in the diagram below. These include adsorption and desorption of the precursor molecules, surface diffusion, nucleation and growth, and desorption of reaction products. In our laboratory, we characterize these surface reactions, and in particular, identify the sites on the semiconductor surface that mediate them. By understanding the atomic-scale processes that govern thin film growth, we make it possible to build new and more powerful devices.



At UCLA, the surface chemistry of MOCVD is revealed with state-of-the-art instruments, including reflectance difference spectroscopy, infrared spectroscopy, electron diffraction, x-ray photoemission, scanning tunneling microscopy, and ab initio molecular cluster calculations. Click on Facilities to learn more about our capabilities. In addition, you can check out some of the surfaces and surface sites that we have characterized by going to the STM Gallery and Molecular Clusters links, or by viewing our Publications.
Careers
Students working in this field learn all the skills necessary for rewarding careers in the microelectronics, communications, and high-tech materials industries. Our graduates are in great demand, and have landed exciting jobs with fast growing companies. You can see where our graduates have gone by clicking on Recent Graduates.
HEMT




Los HEMT son Transistores tipo FET, en que se reemplaza el canal de conducción por una juntura en la que se unen dos materiales semiconductores con diferentes brechas entre las bandas de conducción y de valencia, lo que produce una capa muy delgada en la cual el nivel de Fermi esta un poco por sobre la banda de conducción, por otro lado los portadores quedan confinados a una capa tan angosta que se los puede describir como un gas de electrones de dos dimensiones. Por estas dos razones los portadores de carga adquieren una muy alta movilidad y una alta velocidad de saturación, habilitándolos para reaccionar a campos que varían a muy altas frecuencias, como también reduce muy significativamente el efecto de dispersión que los átomos de dopaje producen sobre los portadores de carga rediciendo en gran medida el ruido que este dispositivo emite.
Normalmente los dos materiales semiconductores tiene la misma estructura cristalina permitiendo un adecuado calce entre estas, esto con el objeto de evitar que los portadores queden atrapados en las discontinuidades que se podrían producir. Reduciendo su rendimiento.
Existe un tipo de HEMT en los cuales esto no se cumple, los pseudomorphic HEMT (PHEMT), en ellos se pone una capa extremadamente delgada de de unos de los materiales, tanto que esta se deforma para calzar con el otro material. Con esto se logran brechas de energía mucho más altas permitiendo un mejor rendimiento del transistor.
Otra forma de lograr lo anterior es la inserción de una capa muy delgada de adaptación entre los dos materiales de forma que esta se la encargada de unir las dos estructuras cristalinas, esto presenta una ventaje cuando la capa de adaptaciones esta construida con AlInAs, en este material la concentración de In es graduada de forma de calzar las estructuras cristalinas, entonces se tiene que una alta concentración de In produce alta ganancia y una baja concentración produce bajo ruido

Military communications
Historically, the first military communications had the form of sending/receiving simple signals (often hidden or encoded to be unrecognizable for the enemy). Respectively, the first distinctive tactics of military communications were called Signals, while units specializing in those tactics received the Signal Corps name. Later Signals and Signaller became a highly-distinct military occupation dealing rather with general communications methods (similar to those in civil use) than with weapons.
Present-day militaries of an informational society conduct very intense and complicated communicating activities on a daily basis, using modern high-tech telecommunications and computing methods. Only a small part of these activities is immediately related to the combat actions. That's why some prefer the term "military communications".
In 1934 the USSR invented the first military based equipment inside an automotive vehicle.
MESFET


MESFET stands for Metal Semiconductor Field Effect Transistor. It is quite similar to a JFET in construction and terminology. The difference is that instead of using a p-n junction for a gate, a Schottky (metal-semiconductor) junction is used. MESFETs are usually constructed in compound semiconductor technologies lacking high quality surface passivation such as GaAs, InP, or SiC, and are faster but more expensive than silicon-based JFETs or MOSFETs. Production MESFETs are operated up to approximately 45 GHz[1], and are commonly used for microwave frequency communications and radar. From a digital circuit design perspective, it is increasingly difficult to use MESFETs as the basis for digital integrated circuits as the scale of integration goes up, compared to CMOS silicon based fabrication.

The MESFET differs from the common insulated gate FET in that there is no insulator under the gate over the active switching region. This implies that the MESFET gate should, in transistor mode, be biased such that one does not have a forward conducting metal semiconductor diode instead of a reversed biased depletion zone controlling the underlying channel. While this restriction inhibits certain circuit possibilities, MESFET analog and digital devices work reasonably well if kept within the confines of design limits. The most critical aspect of the design is the gate metal extent over the switching region. Generally the narrower the gate modulated carrier channel the better the frequency handling abilities, overall. Spacing of the source and drain with respect to the gate, and the lateral extent of the gate are important though somewhat less critical design parameters. MESFET current handling ability improves as the gate is elongated laterally, keeping the active region constant, however is limited by phase shift along the gate due to the transmission line effect. As a result most production MESFETs use a built up top layer of low resistance metal on the gate, often producing a mushroom-like profile in cross section.

Bipolar junction transistor

A bipolar (junction) transistor (BJT) is a three-terminal electronic device constructed of doped semiconductor material and may be used in amplifying or switching applications. Bipolar transistors are so named because their operation involves both electrons and holes. Charge flow in a BJT is due to bidirectional diffusion of charge carriers across a junction between two regions of different charge concentrations. This mode of operation is contrasted with unipolar transistors, such as field-effect transistors, in which only one carrier type is involved in charge flow due to drift. By design, most of the BJT collector current is due to the flow of charges injected from a high-concentration emitter into the base where they are minority carriers that diffuse toward the collector, and so BJTs are classified as minority-carrier devices
Bipolar Junction Transistors (BJTs):



This section will, in no way, tell you everything about transistors. It will just give you a general idea what transistors are and how they may be used in car audio. The two main types of transistors are bipolar transistors and field effect transistors.
A bipolar transistor uses a small current to control a larger current, a little like a relay. Bipolar transistors generally have 3 terminals. The control terminal is called the base. The other 2 terminals are known as the emitter and the collector and they carry virtually all of the current flowing through the transistor. There are 2 basic configurations of bipolar transistors, one is an 'NPN' the other is a 'PNP'. The two are very similar. The biggest difference is the direction of current flow through the collector and emitter. For now we will mainly discuss the NPN transistor.
Current Control:
OK, I said that a transistor is sorta like a relay. Remember that you have to have a certain amount of voltage across the coil of a relay for the relay to engage. A transistor needs to have a small amount of voltage difference between the base and the emitter. The required voltage is usually about .6 volts. On an NPN transistor, the base must have a positive voltage with respect to the emitter. Look at the diagram below. It shows the schematic symbol for an NPN bipolar transistor (left) and a PNP bipolar transistor. Note the names of the individual terminals.

One problem faced by installers is the need to reliably switch a relay when the switching output from the control device is less than the 12 volts needed to actuate the relay. In the first diagram, you can see that the voltage applied to the resistor is 0v D.C. and the relay contacts are not closed. In the next diagram, you will see that 12 volts D.C. is applied to the resistor and the relay contacts are closed (because the transistor is now conducting current).
You no doubt noticed the resistor connected to the base of the transistor. This is to prevent damage to the transistor. If the voltage applied to the base is greater than approximately .6 volts (with respect to the emitter) the transistor may be damaged. Think of it like this... (I know my analogies ARE lame, but they will help some people) If you were turning a light switch on with the blade on the front of a bulldozer (don't try this at home, kids), you would have to be very precise in positioning the blade to prevent damaging the switch. If you connected the switch to the dozer blade with a rubber band, the dozer blade could still turn on the switch and the blade could go as high as physically possible without destroying the switch. Now, what if the rubber band is too strong or too weak? The switch might still be destroyed if the rubber band was too strong or, if the rubber band is too weak, the switch may not be switched 'on' at all (even at the highest position of the dozer blade). The same is true with the transistor. If a resistor with a low resistance is connected in series with the base and a high voltage is applied to the resistor, the transistor may still be destroyed. If the resistor has a very high resistance and a voltage is applied to it, the transistor may not be fully turned on. If a transistor is only partially turned on, it means that there will be a voltage drop between the collector and the emitter of the transistor and the transistor may become hot.
If a transistor is connected as shown in the previous diagram, there will be a voltage drop across it because the transistor cannot be turned 'on' enough to have absolutely no voltage across it while current is flowing through it. Since there is a voltage drop across the transistor and current flowing through it, there will be power dissipation in the form of heat. The amount of heat produced is determined by the power dissipation. If the transistor is not mounted to a heat sink, it may be destroyed by the heat.
Diodo Varicap

El diodo de capacidad variable o Varactor (Varicap) es un tipo de diodo que basa su funcionamiento en el fenómeno que hace que la anchura de la barrera de potencial en una unión PN varíe en función de la tensión inversa aplicada entre sus extremos. Al aumentar dicha tensión, aumenta la anchura de esa barrera, disminuyendo así la capacidad del diodo. De este modo se obtiene un condensador variable controlado por tensión. Los valores de capacidad obtenidos van desde 1 a 500 pF. La tensión inversa mínima tiene que ser de 1 V.
La aplicación de estos diodos se encuentra, sobre todo, en la sintonía de TV, modulación de frecuencia en transmisiones de FM y radio y en los osciladores controlados por voltaje (oscilador controlado por tensión).
En tecnología de microondas se pueden utilizar como limitadores: al aumentar la tensión en el diodo, su capacidad varía, modificando la impedancia que presenta y desadaptando el circuito, de modo que refleja la potencia incidente.
Diodo Schottky

El diodo Schottky o diodo de barrera Schottky, llamado así en honor del físico alemán Walter H. Schottky, es un dispositivo semiconductor que proporciona conmutaciones muy rápidas entre los estados de conducción directa e inversa (menos de 1ns en dipositivos pequeños de 5 mm de diámetro) y muy bajas tensiones umbral (también conocidas como tensiones de codo, aunque en inglés se refieren a ella como "knee", o sea, de rodilla). La tensión de codo es la diferencia de potencial mínima necesaria para que el diodo actúe como conductor en lugar de circuito abierto; esto, claro, dejando de lado la región Zener, que es cuando más bien existe una diferencia de potencial lo suficientemente negativa para que -a pesar de estar polarizado en contra del flujo de corriente- éste opere de igual forma como lo haría regularmente.
A frecuencias bajas un diodo normal puede conmutar fácilmente cuando la polarización cambia de directa a inversa, pero a medida que aumenta la frecuencia el tiempo de conmutación puede llegar a ser muy bajo, poniendo en peligro el dispositivo.
El diodo Schottky está constituido por una unión metal-semiconductor (barrera Schottky), en lugar de la unión convencional semiconductor P - semiconductor N utilizada por los diodos normales.
Así se dice que el diodo Schottky es un dispositivo semiconductor "portador mayoritario". Esto significa que, si el cuerpo semiconductor está dopado con impurezas tipo N, solamente los portadores tipo N (electrones móviles) desempeñarán un papel significativo en la operación del diodo y no se realizará la recombinación aleatoria y lenta de portadores tipo N y P que tiene lugar en los diodos rectificadores normales, con lo que la operación del dispositivo será mucho más rápida.
Diodo Gunn
Es una forma de diodo usado en la electrónica de alta frecuencia. A diferencia de los diodos ordinarios construidos con regiones de dopaje P o N, solamente tiene regiones del tipo N, razón por lo que impropiamente se le conoce como diodo. Existen en este dispositivo tres regiones; dos de ellas tienen regiones tipo N fuertemente dopadas y una delgada región intermedia de material ligeramente dopado. Cuando se aplica un voltaje determinado a través de sus terminales, en la zona intermedia el gradiente eléctrico es mayor que en los extremos. Eventualmente esta zona empieza a conducir esto significa que este diodo presenta una zona de resistencia negativa.
La frecuencia de la oscilación obtenida a partir de este efecto, es determinada parcialmente por las propiedades de la capa o zona intermedia del diodo, pero también puede ser ajustada exteriormente. Los diodos Gunn son usados para construir osciladores en el rango de frecuencias comprendido entre los 10 Gigahertz y frecuencias aún más altas (hasta Terahertz). Este diodo se usa en combinación con circuitos resonantes construidos con guías de ondas, cavidades coaxiales y resonadores YIG (monocristal de granate Itrio y hierro, Yttrium Iron Garnet por sus siglas en inglés) y la sintonización es realizada mediante ajustes mecánicos, excepto en el caso de los resonadores YIG en los cuales los ajustes son eléctricos.
Los diodos Gunn suelen fabricarse de arseniuro de galio para osciladores de hasta 200 GHz, mientras que los de Nitruro de Galio pueden alcanzar los 3 Terahertz.
El dispositivo recibe su nombre del científico británico, nacido en Egipto, John Battiscombe Gunn quien produjo el primero de estos diodos basado en los cálculos teóricos del profesor y científico británico Cyril Hilsum.
Diodos semiconductores
Es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.
Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.
Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule. El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.
Un fotodiodo es un semiconductor construido con una unión PN, sensible a la incidencia de la luz visible o infrarroja. Para que su funcionamiento sea correcto se polariza inversamente, con lo que se producirá una cierta circulación de corriente cuando sea excitado por la luz. Debido a su construcción, los fotodiodos se comportan como células fotovoltaicas, es decir, en ausencia de luz exterior generan una tensión muy pequeña con el positivo en el ánodo y el negativo en el cátodo. Esta corriente presente en ausencia de luz recibe el nombre de corriente de oscuridad.